
Natural convection heat transfer in horizontal eccentric
elliptic annuli containing saturated porous media

J.P.B. Motaa,*, I.A.A.C. Estevesa, C.A.M. Portugala, J.M.S.S. Esperanc° aa,
E. Saatdjianb

aDepartamento de QuõÂmica, Centro de QuõÂmica Fina e Biotecnologia, Faculdade de CieÃncias e Tecnologia, Universidade Nova de

Lisboa, 2825-114 Caparica, Portugal
bLaboratoire d'EnergeÂtique et de MeÂchanique TheÂorique et AppliqueÂe, 2 Ave. de la ForeÃt de Haye, B.P. 160, 54504 Vandoeuvre

Cedex, France

Received 21 July 1999; received in revised form 21 February 2000

Abstract

The two-dimensional Darcy±Boussinesq equations, governing natural convection heat transfer in a saturated
porous medium, are solved in generalised orthogonal coordinates, using high-order compact ®nites di�erences on a
very ®ne grid. The mesh is generated numerically using the orthogonal trajectory method. The code is thoroughly

validated against results reported in the literature for concentric and eccentric cylinders, obtained using di�erent
numerical techniques. The code is applied to horizontal eccentric elliptic annuli containing saturated porous media.
The judicious stretching of one of the annular walls in the horizontal direction reduces the heat losses with respect

to a concentric cylindrical annulus with the same amount of insulating material. The savings in heat transfer can be
further improved if the elliptic annular shape is made eccentric. Previous studies show that, under certain
conditions, eccentric cylinders may lead to a more e�ective insulation than concentric ones. The results presented

here provide an alternative approach to optimising the heat transfer rate by a proper choice of the annular shape.
The energy savings are of the order of 10%. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection in porous annuli has a wide var-

iety of technological applications involving thermal

insulation, cryogenics, thermal energy storage, and

underground cable systems, to mention just a few [1,2].
Nevertheless, despite its important industrial appli-

cations and the numerous studies published so far, it is

a problem that is not yet totally understood. Previous

published work has demonstrated, both experimentally
and theoretically, the richness and complexity of the

problem, which includes multiplicity of solutions (bi-
furcations [3±7] and hysteresis loops [8±10]), steady
and periodic regimes [3,11], two- and three-dimensional
¯ows [4,11,12], and various types of multicellular ¯ow

patterns [3,4,6,8,9].
Since the problem has been mostly studied in regular

geometries, namely concentric and eccentric cylindrical

and elliptic annuli, it lends itself to the application of
di�erent numerical techniques. These include ®nite
di�erences [7±11,13], ®nite elements [11], spectral

methods [3±5], perturbation expansion techniques [1,2],
and boundary layer methods [14].
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The ®rst experimental and numerical work on por-

ous annuli was done by Caltagirone [11], who studied
a concentric cylindrical porous layer with radius ratio
R = 2. In his experiments, the thermal ®eld was visu-

alised using the Christiansen e�ect [15,16]. Experimen-
tal Nusselt numbers were also determined based on
temperature measurements of the thermal ®eld by

means of several thermocouples inserted in the porous
layer [17]. For Rayleigh numbers below 6525, Calta-

girone observed a steady two-dimensional ¯ow regime
with two symmetric convective cells. For higher Ray-
leigh numbers, ¯uctuating three-dimensional e�ects

were observed in the upper part of the layer, although
the lower zone remained two-dimensional.

The visualisation experiments of Caltagirone have
been recently redone by Charrier-Mojtabi et al. [6]. In
a series of experiments on a cylindrical porous layer of

R = 2, when the Rayleigh number was increased up
to 250 (heating phase) the two-dimensional ¯ow con-
sisting of two symmetric cells became three-dimen-

sional in the upper part of the layer, while still
remaining two-dimensional in the lower part. During

the cooling phase the ¯ow became two-dimensional
again, but this time four cells appeared in the layer.
The original two-cellular ¯ow became visible again

when the Rayleigh number dropped below 69. This set
of experiments is very interesting, since it proves the
existence of a two-dimensional ¯ow.

The observation that reducing the radius ratio defers
the convective e�ects to higher Rayleigh numbers has

led to the study of eccentric cylinders, since they may
lead to a reduction of the heat losses with respect to
the concentric case. Moving the inner cylinder

upwards, so that its centre is above that of the outer
cylinder, decreases the local thickness of the upper part
of the annulus, where the convective e�ects are

stronger, therefore reducing the impact of the convec-
tive heat transfer. On the other hand, the decrease of

gap spacing in the top part of the layer increases the
conductive heat losses. Hence, one may expect that an
optimal value of the eccentricity exists for which the

heat losses are minimised. This problem was ®rst stu-
died by Bau et al. using both ®nite di�erences [18] and
regular perturbation expansion techniques [1,2].

Although the results presented apply to small Rayleigh
numbers only, it is concluded in those works that the

heat losses can be reduced with respect to the con-
centric case. In a later study, Himasekhar and Bau [14]
used a boundary-layer technique to obtain a corre-

lation for the Nusselt number, which is valid for a
large range of Rayleigh numbers and geometric par-
ameters. The above-mentioned studies were restricted

to the simplest ¯ow regime, which is the two-dimen-
sional two-cellular one.

More recently, Mota and Saatdjian [7] extended the
study of eccentric cylinders to four-cellular ¯ow con-

ditions and observed that the eccentricity that mini-
mises the heat transfer for a given Rayleigh number

and radius ratio changes with the ¯ow regime. As a
more robust alternative to setting the eccentricity equal
to the value that minimises the heat transfer in two-cel-

lular ¯ow conditions, the authors proposed increasing
the eccentricity up to the value above which the four-
cellular ¯ow regime is no longer physically possible.

Here, the two-dimensional Darcy±Boussinesq
equations are solved in generalised orthogonal coordi-
nates using a high-order ®nite di�erence method. In

principle, any annular geometry can be handled with
this code if an orthogonal coordinate transformation
that maps the physical domain onto a rectangle is
known. In order to reduce the work of adapting the

code to a particular geometry, the grid is generated nu-
merically. In practice, when studying the impact of
geometry on heat transfer, the code must be applied to

a family of shapes de®ned by a limited number of par-
ameters, otherwise the analysis is not manageable. An
eccentric elliptic annulus, symmetric with respect to the

vertical centre-plane, was selected since very di�erent
annular shapes can be obtained through a proper
selection of the values of the geometric parameters.

Since in most studies symmetry about the vertical
centre-plane is assumed in the numerical model or
observed experimentally, the total number of ¯ow cells

Fig. 1. (a) Geometrical con®guration of the problem; (b)

sketch of the computational domain and orthogonal coordi-

nate system �a, b� for an annular space de®ned by O1 � 0:6,
O2 � 0:7, R = 2, and E � 0:55: Also included in the ®gure is

the numerical grid generated using the orthogonal trajectory

method. The actual grid employed in the simulations has 161

� 101 �a� b� points, although for clarity purposes only a few

grid lines are drawn.
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in the annular space is always even. For this reason,
some authors characterise the ¯ow ®eld by counting

the number of cells in half the annular space, while
others count the total number of cells. This may even-
tually confuse the reader if it is not clearly stated in

the text what part of the layer is e�ectively taken into
account. In this paper we always refer to the total
number of cells in the layer.

2. Problem formulation

The annular space between two vertically aligned

eccentric ellipses, as depicted in Fig. 1(a), is completely
de®ned by the following dimensionless parameters: the
axes ratio of each ellipse,

O1 � b1=a1 and O2 � b2=a2; �1�
the hydraulic-radius ratio,

R � R2=R1 �
��������������
O2=O1

p
�a2=a1 � �

��������������
O1=O2

p
�b2=b1 �, �2�

where R1 �
���������
a1b1
p

and R2 �
���������
a2b2
p

; and the relative
eccentricity,

E � e=�R2 ÿ R1 �: �3�
For example, given a1, the other axes can be calculated
using the following expressions:

b1 � O1a1, a2 � R
��������������
O1=O2

p
a1,

b2 � O2a2 � R
�����������
O1O2

p
a1:

�4�

The eccentricity is denoted as positive when the centre
of the inner ellipse is above the centre of the outer

ellipse. The geometric parameters employed in this
work follow, as close as possible, the nomenclature
adopted by most authors who have studied concentric

and eccentric cylinders.
The problem is formulated as follows. The annular

space is occupied by a saturated porous medium. The

surfaces of the two ellipses are held at constant tem-
peratures, T 01 and T 02, respectively, with T 01 > T 02: The
following assumptions are made in order to simplify
the formulation:

. the ¯uid is in thermal equilibrium with the porous
matrix;

. the porous medium is assumed to be macroscopi-

cally homogeneous and isotropic, and is treated as a
®ctitious ¯uid with heat capacity �rCp�e � e�rCp�f �
�1ÿ e��rCp�s and e�ective thermal conductivity ke;

. the physical properties of the ¯uid are evaluated at
the mean temperature T 0m��T 01�T 02�=2, and are con-
sidered constant;

. the ¯ow in the porous medium is assumed to be
governed by Darcy's law;

. density variations with temperature are only taken
into account in the buoyancy terms (Boussinesq ap-
proximation).

These assumptions are a valid approximation for a
large range of practical applications, as demonstrated
by Aniri and Vafai [19]. Given the preceding assump-

tions, the governing dimensional equations in vector
form can be written as

r0 � v 0 � 0, �5�

v 0 � ÿl
m

ÿr0P 0 ÿ rg
�
, �6�

ÿ
rCp

�
e

@T 0

@ t 0
� ÿrCp

�
f
v 0 � r 0T 0 ÿ ker 2T 0 � 0, �7�

r � rm

�
1ÿ g

ÿ
T 0 ÿ T 0m

��
: �8�

These equations represent, respectively, the continuity
equation for an incompressible ¯uid, Darcy's law for
steady-state ¯ow in a porous medium, the energy

equation, and the ¯uid equation of state. The reader is
referred to the nomenclature section for the meaning
of those symbols that are not explicitly de®ned in the

text.
Eqs. (5)±(8) are rendered non-dimensional by mak-

ing use of the following dimensionless variables, in

which R1 is taken as the reference length:

�x, y� �
ÿ
x 0, y 0

�
R1

, t � ke

R 2
1

ÿ
rCp

�
e

t 0,

v � R1

ÿ
rCp

�
f

ke

v 0, T � T 0 ÿ T2

T1 ÿ T2
,

P �
ÿ
rCp

�
f
l

kem
P 0:

�9�

In the scaled coordinate space, the axes of the ellipses
have the following dimensionless values:

A1 � 1=
������
O1

p
, B1 �

������
O1

p
, A2 � R=

������
O2

p
,

B2 � R
������
O2

p
:

�10�

Since the ¯ow is assumed to be two-dimensional and

incompressible, a dimensionless stream function, c, is
de®ned as

rc � ÿez � v, �11�

so that the continuity equation is automatically satis-
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®ed. The symbol ez denotes the Cartesian unit vector
normal to the cross section of the annular layer.

Taking the curl of Eq. (6) and retaining the z com-
ponent, replaces pressure by c as dependent variable.
This formulation has been employed with success by

several authors [6±9,11,20,21]. The resulting governing
set of dimensionless equations reduces to

@T

@ t
� r 2Tÿ v � rT, �12�

r 2c � ÿRaÿey � rT� � ez: �13�

The dimensionless parameter appearing in Eq. (13) is
the Darcy±Rayleigh number based on the inner

hydraulic radius. It is de®ned by

Ra �
ÿ
rCp

�
f
lrmgg�T1 ÿ T2 �R1

kem
: �14�

The problem is solved in generalised orthogonal coor-

dinates, although, as stated above, the discussion is
restricted to eccentric elliptic annuli. Orthogonal coor-
dinates are adopted here, since they produce fewer ad-

ditional terms in the transformed partial di�erential
equations and have the advantage that the boundary
conditions are represented entirely along coordinate
lines without the need of interpolation [22].

When the 2D Cartesian space (x, y ) is mapped onto
an orthogonal space de®ned by the set of coordinates
�a, b), Eqs. (12) and (13) take the following form:

@T

@ t
� 1

hahb

"
@

@a

�
hb
ha

@T

@a

�
� @

@b

�
ha
hb

@T

@b

�#

ÿ
�
va
ha

@T

@a
� vb

hb

@T

@b

�
, �15�

@

@a

�
hb
ha

@c
@a

�
� @

@b

�
ha
hb

@c
@b

�

� Ra

�
@y

@b
@T

@a
ÿ @y
@a

@T

@b

�
, �16�

where va and vb are given by

va � ÿ 1

hb

@c
@b

, vb � 1

ha

@c
@a
: �17�

The metric coe�cients associated with the coordinate
transformation are de®ned by

ha �
������������������������������������
@x

@a

� 2

�
�
@y

@a

� 2
s

,

hb �
������������������������������������
@x

@b

� 2

�
�
@y

@b

� 2
s

:

�18�

In the orthogonal grid employed in the present work,
constant a values are associated with elliptic curves,
whereas constant b values result in lines joining the

two walls (see Fig. 1(b)). In this case, the dimensionless
boundary conditions are

T � 1, c � 0 for a � a1 �inner wall�, �19�

T � 0, c � 0 for a � a2 �outer wall�, �20�
and, since ¯ow symmetry with respect to the vertical
centre-plane is assumed,

@T

@b
� 0, c � 0,

@ 2c

@b 2
� 0 for b � b1 and b2: �21�

The second boundary condition on c is due to the fact
that @va=@b � 0 along the vertical symmetry plane.
The dimensionless local heat ¯ux at the wall is

q � R1q
0

ke�T1 ÿ T2 � � ÿ
1

ha

@T

@a
: �22�

At steady state, the dimensionless total heat ¯ow
across the annulus per unit axial length is

Q � Q 0

ke�T1 ÿ T2 � � ÿ2
�b2
b1

hb
ha

�
@T

@a

�
db for

a � a1 or a2:

�23�

The global Nusselt number is de®ned as the ratio
between the total heat ¯ow and the heat ¯ow when

there is no convection �Ra � 0):

Nu � Qtotal

Qconduction

� Q

2
ÿ
b2 ÿ b1

� �a2
a1

ÿ
ha=hb

�
da: �24�

3. Solution procedure

3.1. Numerical grid generation

It is very possible that an analytical orthogonal

coordinate transformation exists for the geometry
under study. For example, eccentric cylinders can be
described by bipolar coordinates [1,2,7], whereas con-

focal elliptic cylinders can be handled by elliptic cylin-
drical coordinates [10,20,23]. In both cases the coordi-
nate transformations are simple and lead to compact
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expressions of the metric coe�cients. However, the lat-
ter coordinate system restricts the annular geometry to

being confocal, thus eliminating geometries of practical
relevance such as those in which one of the walls is
cylindrical. One of the goals of this work is to develop

a code take can handle an arbitrarily shaped annulus,
which means that the grid must be constructed numeri-
cally. The grid generation technique employed here is

the orthogonal trajectory method [24]. An example of
a numerical grid generated using this method is
depicted in Fig. 1(b).

The orthogonal trajectory method, which is dis-
cussed in [25±27], is essentially a method of character-
istics. It can be pictured as a two-step process. The
®rst step is to lay down a family of smooth non-over-

lapping curves covering the computational domain,
which de®ne one of the computational coordinates.
For the geometry under study an obvious choice is the

family of elliptic curves de®ned by the following para-
metric equation:

x�a, y� � B cos y, y�a, y� � y0 � A sin y, �25�

where

A � A1 � �A2 ÿ A1 �a�, B � B1 � �B2 ÿ B1 �a�,

and y0 � E�1ÿ a� �
�26�

are linear stretching transformations of

a� � �aÿ a1 �
�a2 ÿ a1 � : �27�

By varying the value of y between ÿp=2 and p=2, each
line identi®ed by a constant a value de®nes an ellipse
in the physical domain (half the annular space). The
coordinate system �a, y� is non-orthogonal, but the a
coordinate already ful®ls some of the required con-
ditions: the curves de®ned by constant a values are or-
thogonal to the vertical symmetry plane and those

de®ned by a � a1 and a � a2 match the wall bound-
aries of the annular space. The stretching transform-
ations de®ned by Eqs. (26) and (27) give rise to

uniformly spaced a-coordinate lines in the physical
domain. By modifying those equations it is easy to cre-
ate a non-uniform grid in the physical domain, e.g., to
condense the a grid lines near wall boundaries.

The second step of the orthogonal trajectory method
is to keep the a-coordinate lines and to replace the y-
lines by a set of orthogonal b-coordinate lines. In

order to create the b-coordinate lines, a series of curves
have to be constructed starting at prescribed points on
one of the wall boundaries, ending at the other bound-

ary, and intersecting each intervening a-coordinate line
at right angles.
The slope of a constant a-coordinate line can be

expressed as�
dy

dx

�
a�const

� @y=@y
@x=@y

: �28�

For a trajectory to be orthogonal to this line, its slope
must be�

dy

dx

�
b�const

� ÿ 1

�dy=dx�a�const

� ÿ@x=@y
@y=@y

: �29�

Furthermore, along such a line�
dx

da

�
b�const

� @x

@a
� @x
@y

�
dy
da

�
b�const

,

�
dy

da

�
b�const

� @y

@a
� @y
@y

�
dy
da

�
b�const

:

�30�

Equating Eq. (29) and the ratio of the two expressions
in Eq. (30) produces an ordinary di�erential equation

de®ning the b-coordinate lines:

�
dy
da

�
b�const

� ÿ

�
@x

@a

��
@x

@y

�
�
�
@y

@a

��
@y

@y

�
�
@x

@y

� 2

�
�
@y

@y

� 2
: �31�

The initial condition for this equation is the prescribed

grid distribution on one of the wall boundaries. This
non-sti� ODE is solved by an explicit fourth-order
Runge±Kutta method [28]. Preliminary tests showed
that for the geometries considered in this study the

best grids are obtained by specifying the location of
the b-coordinate lines on the outer wall and employing
Eq. (31) to compute the trajectories towards the inner

wall. The following grid distribution on the outer wall
boundary �a � a2� was employed:

x � B2 cos b�,

y � A2 sin b�, b� � p
�
bÿ b1
b2 ÿ b1

ÿ 1

2

�
:

�32�

If the numerical grid has M points in the a direction

and N points in the b direction, it is convenient to set
a1 � 1, a2 �M, b1 � 1, b2 � N, and employ unit grid
spacing in both computational coordinates, since this

leads to the simplest form of the ®nite-di�erence ex-
pressions.

3.2. Numerical method

The steady-state solution of the problem is com-

puted using a more accurate scheme than those
employed in our previous studies on concentric and
eccentric cylinders [7±9]. In the present code, all de-
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rivatives with respect to the computational coordi-
nates, including those appearing in the de®nition of

the metric coe�cients, are computed using a fourth-
order accurate compact di�erencing scheme described
by Hirsh [29]. This author and Orszag and Israeli [30]

credited the scheme to Kreiss [31]. The reader is also
referred to Rubin and Khosla [32] for related methods.
Compact di�erencing employs implicit formulas

relating both the functional value and the correspond-
ing derivative at the node and its neighbours. Compact
schemes have higher order accuracy than ®nite di�er-

ences based on the same number of grid points. The
increased order in accuracy comes at the expense of
treating the derivatives at the grid points as unknowns.
If F and S are, respectively, the ®rst and second de-

rivatives of a continuous function f�x�, they can be
approximated to fourth order on a uniform mesh by
the following relations [29]:

�Fiÿ1 � 4Fi � Fi�1 � �
�

3

Dx

�ÿ
fi�1 ÿ fiÿ1

�
, �33�

�Siÿ1 � 10Si � Si�1 �

�
�

12

Dx 2

�ÿ
fiÿ1 ÿ 2fi � fi�1

�
: �34�

These two equations yield a tridiagonal matrix for the

solution of F or S, which can be easily solved by the
Thomas algorithm if f is known at the grid points.
When the boundary values of F and/or S are

unknown, the following fourth-order relationship, pro-
posed by Hirsh [29], can be used to generate the ad-
ditional boundary conditions:

fi ÿ fi�1 � Dx
�
KFi � �1ÿ K�Fi�1

�
�
ÿ
Dx 2=2

���
Kÿ 1

3

�
Si �

�
Kÿ 2

3

�
Si�1

�
� 0:

�35�

Certain values of the free parameter K result in very
handy relations: choosing K � 1 or K � 0 isolates the
®rst derivative at a point; K � 1=3 or K � 2=3 isolate

the second derivative.
Although the steady-state solution of the problem is

sought, the transient term in Eq. (15) is retained in
order to solve the equation by marching in ®ctitious

time with an alternating direction implicit (ADI)
method to reach the asymptotic solution. The split
form of the algorithm proposed by Peaceman and

Rachford [33], and adopted in one of our previous
studies [7], is used here. A similar approach has been
taken by Hirsh [2] to solve 2D low Reynolds number

viscous steady ¯ows in a ¯uid layer. The two
approaches di�er, however, in the method for solving
the elliptic Poisson Eq. (16) for the stream function.

In each iteration �n4n� 1), new temperature values
are computed by applying one step of the ADI method

to Eq. (15) using the most recently calculated values of
the stream function, cn: Since the compact di�erence
scheme treats both the functional values and the de-

rivatives as unknowns, each half-step of the ADI
method requires the solution of a 3� 3 block-tridiago-
nal matrix for each grid line in the implicit direction.

These linear systems are solved e�ciently by a block-
extension of the Thomas algorithm [34]. Boundary
values of T and of its derivatives at the ends of each

line being solved are obtained from the boundary con-
ditions of the problem and, when necessary, from Eq.
(35).
After completion of a full ADI step, the stream-

function values are updated using the following itera-
tive procedure:

A � dcn�1, k�1 � Ra � bn�1 ÿL
ÿ
cn�1, k�, �36�

cn�1,k�1 � cn�1,k � dcn�1,k�1 �k � 1, 2, . . . �, �37�

where cn�1,0 � cn, k is the inner iteration index, A is
an iteration matrix, and Ra � bn�1 is the vector holding
the values on the right-hand side of Eq. (16) computed

at the grid points using compact di�erences on the
updated temperature values, T n�1: The operator L���
approximates the left-hand side of Eq. (16) by compact

di�erences and depends only on the computational
grid. The additional boundary conditions on c are
obtained using Eq. (35).

The iteration matrix A is an approximate LU de-
composition of the system of linear algebraic equations
that is obtained by discretisation of the left-hand side
of Eq. (16) using the standard three-point second-order

central ®nite di�erences. The approximate LU de-
composition is based on the Modi®ed Strongly Implicit
Procedure (MSIP) developed by Schneider and Zedan

[35], which is itself an improvement over the Strongly
Implicit Procedure of Stone [36]. The reader is referred
to the original works for further details on the de-

composition procedure. MSIP has a relaxation par-
ameter, t, in order to increase the convergence rate.
Preliminary tests revealed that, in general, the best
convergence rate for our problem is obtained with t �
0:7:
Since the iteration matrix A depends only on the

grid, the approximate LU decomposition of A is per-

formed only once, prior to the start of the main calcu-
lations. Once this has been done, each iteration given
by Eq. (36) is computed e�ciently because A has

already been factored into a lower L and upper U tri-
angular matrices. Although convergence can not be
proved for all cases, extensive testing demonstrated
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that the iterative procedure devised works well in prac-
tice.

The whole scheme is repeated until the solution con-
verges. The calculations are ended when, for every grid
point, the dimensionless temperature di�erence

between two consecutive time steps is smaller than a
prescribed tolerance, TOL, which is proportional to
Dt:

max
i,j
jT n�1

i,j ÿ T n
i,jj < TOL, TOL � 10ÿ4Dt: �38�

Fictitious time steps in the range 10ÿ1 ÿ 10ÿ3 were
employed in practice.
A computational grid with 161� 101 �a� b� points

covering half the annular space was employed, since
symmetry with respect to the vertical centre-plane is
assumed. Based on our previous work [7±9] the grid is
probably over-sized for the accuracy intended. How-

ever, the grid dimensions were not reduced because the

computational time was relatively short (less than 20

min) and we wanted to ensure that multicellular ¯ow

structures were captured with high resolution. Further-

more, the PeÂ clet number based on grid spacing for this

mesh was always below 2 for the various cases con-

sidered, ensuring that the matrix A employed in the

stream-function iterative procedure was always diagon-

ally dominant.

Due to the implicit nature of compact di�erences,

the local temperature gradients in the a direction on

both walls are readily available, since they are com-

puted to fourth order as part of the solution. The glo-

bal Nusselt number is calculated using a numerical

quadrature procedure compatible to fourth-order accu-

racy [28]. The di�erence in the calculated Nusselt num-

bers for the inner and outer walls was never greater

than 0.5%.

Table 1

Comparison of values of Nusselt number obtained using compact ®nite di�erences (present work) with values obtained numerically

by other authorsa

Ra PadeÂ Fourier±Galerkin Collocation±Chebyshev Finite di�erences Present work

Two-cellular ¯ow ER0:001
50 1.343 1.335 1.338

100 1.862 1.844 1.861

120 2.050 2.052 2.050

150 2.26 2.26 2.309

200 2.54 2.68 2.684 2.63 2.688

300 3.287 3.310 3.322

E � 0:2
50 1.293 1.288 1.292

100 1.765 1.743 1.764

200 2.59 2.462 2.550

E � 0:4
50 1.246 1.247

100 1.62 1.61 1.621

150 1.98 1.95 1.975

200 2.3 2.26 2.294

E � 0:6
50 1.199 1.198

100 1.479 1.465 1.479

150 1.744 1.69 b

200 1.993 1.93 b

E � 0:8
50 1.143 1.144

100 1.327 1.32 1.327

150 1.494 1.47 1.500

200 1.64 1.62 1.642

Four-cellular ¯ow, E � 0

120 2.266 2.261 2.272

200 2.90 2.907 2.921

300 3.48±3.56 3.55±3.70 3.520

a PadeÂ : Ref. [2]; Fourier±Galerkin and collocation±Chebyshev: Ref. [6]; ®nite di�erences: Ref. [18].
b Our numerical analysis revealed that only the four-cellular solution is stable.
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4. Code validation

In order to ascertain the validity of the code, pre-

liminary runs were made for several test cases and the
results were compared with those reported by other
authors. The comparison is limited to concentric and

eccentric cylinders, since these are the only geometries
for which information is available in the existing litera-
ture. However, since changing the eccentricity factor

gives rise to noticeable di�erences in the overall shape
of the annular space, this approach is su�cient to test
the validity and accuracy of the grid generation tech-

nique and numerical solver.
Table 1 compares steady-state global Nusselt num-

bers obtained using the present code with those
reported by other authors using di�erent numerical
techniques [2,8,18]. The comparison covers a large

range of E and Ra values, and includes both two- and
four-cellular two-dimensional ¯ow regimes. The
present results are shown to be in good agreement

with those obtained using other numerical techniques.
In particular, our Nusselt numbers are much closer to
those obtained using the PadeÂ and Galerkin methods

than the results of the low-order ®nite di�erences. This
fact suggests that the present results are, indeed, com-
puted with higher accuracy.

As a further test of the accuracy of our code, the
critical Rayleigh number for the onset of the 2D four-
cellular ¯ow regime was determined for a concentric

porous annulus of radius ratio R = 2. This case has
received the most attention in the literature, both ex-

perimentally and numerically [3,6,8,9,12]. In order to
determine the bifurcation point, the lower branch of
the Nusselt curve, identifying the two-cellular ¯ow,

was ®rst obtained by computing the steady-state sol-
ution for successively larger values of the Rayleigh
number. Each calculation was run using the previously

converged solution as the initial condition. The initial
guess for the smallest Rayleigh number considered was
the steady-state solution of the pure conduction

regime.
If desired, the code can perturb the initial conditions

in order to induce the appearance of a multicellular

¯ow regime. However, in most cases a four-cellular
¯ow solution can be obtained from an initial condition
representing a two-cellular ¯ow if the increment on Ra

is large enough. This applies to both cylindrical and
elliptical geometries.

As soon as the transition to a four-cellular ¯ow
occurred, either spontaneously or by perturbing the in-
itial conditions, the calculations were carried out in

inverse order, i.e., for decreasing Rayleigh numbers
(upper branch of the Nusselt curve). The process was
repeated until the ¯ow became two-cellular again.

According to our numerical results, the critical Ray-
leigh number for the transition from the two- to the

four-cellular ¯ow regime is

62:95 < Rac < 63:00: �39�
This value is lower than both our previous estimate
�Rac16720:5� based on a second-order ®nite di�er-

ence code [8,9] and the value obtained by Rao et al. [3]
using the Galerkin method at low approximation
�Rac � 65:520:5). However, our higher-order estimate

is very close the value obtained by Himasekar and Bau
[5] using a linear stability analysis �Rac162� and to
the value obtained by Charrier-Mojtabi [12] using a

method based on a mixed Fourier±Chebyshev approxi-
mation �60:5 < Rac < 61:5). Notice that if the grid is
not too coarse, increasing the order of the numerical

solution procedure is equivalent to increasing the grid
resolution for a lower order method. Thus, a lower
estimate of Rac is consistent with an increase in accu-
racy of the numerical solution because it has been

demonstrated [8,9] that a coarse grid is the reason why
some authors do not obtain multicellular ¯ows.
In view of the comparisons presented above we have

every reason to believe that our code is capable of sol-
ving the two-dimensional Darcy±Boussinesq equations
in generalised coordinates with high accuracy.

5. Results and discussion

The results given here are limited to a single Ray-

leigh number of 100 and to a hydraulic radius ratio R
= 2. Performing a detailed analysis of all parameters
(Ra, R, E, O1, and O2� would certainly represent too

much information to include in a single study. Since
the novelty in this work is clearly the geometry and
since the in¯uence of Rayleigh number in porous
annuli has already been studied extensively by several

authors [6±12], we prefer focusing on the geometric
parameters to including results for several values of Ra
and R.

A Ra number of 100 is large enough for convective
e�ects to prevail over conduction and for the appear-
ance of multicellular ¯ow patterns in many geometries.

The two-dimensional four-cellular ¯ow regime has
been observed experimentally [6] for Ra > 69 in a con-
centric cylindrical annulus of R = 2. Under those ¯ow
conditions, the total heat transfer calculated numeri-

cally for moderate values of the Rayleigh number
�Ra < 140� compares well with the average heat trans-
fer measured experimentally when the ¯ow is already

three dimensional (e.g., Fig. 6 of Ref. [8]). For this
range of Rayleigh numbers, the heat transfer calcu-
lated numerically in four-cellular ¯ow conditions is

closer to the experimental 3D ¯ow data than that
obtained with a two-cellular ¯ow ®eld [9]. By selecting
Ra � 100 and R = 2, the present study addresses con-
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ditions for which both the two- and four-cellular two-
dimensional ¯ows are physically possible and allows

some extrapolation of the predicted heat transfer data
to three-dimensional ¯ow. Furthermore, since ®xing
the hydraulic radius ratio is equivalent to comparing

annuli with the same cross-section area, the impact on
heat transfer of reshaping the same amount of insulat-
ing material can be assessed. This is particularly useful

in minimising the heat losses in annular porous insula-
tion.
The results obtained for concentric annuli are pre-

sented ®rst. Fig. 2 shows the impact on total heat ¯ow
of changing the shape of one of the annular walls. The
same heat transfer data are plotted as Nusselt numbers
in Fig. 3. In order to separate the e�ect of the geome-

try of each wall, the results depicted in the two ®gures
do not include annuli for which both walls are ellipti-
cal. The subscript in Oi �i � 1 or 2� indicates which wall

has elliptic shape, the other wall being cylindrical.
Thus, Figs. 2 and 3 are essentially plots of the total
heat loss (or Nusselt number), for the same amount of

porous material, as a function of varying the elliptic
shape of a single wall.
Notice that Oi �Oi > 1� and 1=Oi are instances of the

same geometry. The di�erence between them is that
for Oi the major axis of wall i is horizontally aligned,
whereas for 1=Oi the major axis is vertically aligned.
Therefore, two annuli characterised by Oi and 1=Oi

only di�er in their orientation with respect to the grav-

ity ®eld. Each pair of these geometries is easily ident-
i®ed in Figs. 2 and 3 by the values 2ln Oi:

According to Fig. 2, if in the range ÿ0:5 < ln Oi <
0:3 the same rate of deformation is applied either to
the inner or to the outer wall of the annular space,

then identical values of the total heat transfer are
obtained in the two-cellular ¯ow regime. This is an
unexpected observation, considering that the two

geometries give di�erent heat transfer rates under pure
conduction conditions �Ra � 0). This is why the same
heat transfer data when plotted in the form of Nusselt

number do not appear as two superposed curves in
Fig. 3. The range of values of ln O for which the two
heat transfer curves are coincident extends further to
negative values (vertical stretching of one of the cylin-

ders) than to positive ones (horizontal stretching). As
depicted in Fig. 2, Q varies linearly with ln O under
those conditions.

Since the results of Fig. 2 refer to annuli of hy-
draulic radius ratio R = 2, as jln Oij44 the total heat
¯ow tends to in®nity and the overall Nusselt number

plotted in Fig. 3 approaches one. The prevailing mech-
anism in¯uencing the heat transfer rate across an
annulus with a highly deformed wall is the straighten-

ing of the local thickness of the layer, regardless of
occurring vertically or laterally. Its ultimate e�ect is to
increase the total heat ¯ow, as shown by the increasing
trend of the Q curves in the edges of the graph of

Fig. 2.
The total heat transfer under two-cellular ¯ow con-

ditions is always increased with vertical wall stretching

�ln O < 1). If a cylindrical wall is, however, moderately
¯attened in the horizontal direction �0 < ln O < 0:3),

Fig. 3. Global Nusselt number (Nu ) in a concentric elliptic

annulus as a function of the axis ratio �Oi� for Ra � 100 and

R = 2. The numerical results (symbols) have been line-®tted

in order to give a better visualization of the trends. The

nomenclature is the same as that employed in Fig. 2.

Fig. 2. Dimensionless total heat ¯ow (Q ) in a concentric ellip-

tic annulus as a function of the axis ratio �Oi� for Ra � 100

and R = 2. The numerical results (symbols) have been line-

®tted in order to give a better visualization of the trends. The

subscript in Oi identi®es the elliptic wall [1 = inner (squares),

2 = outer (circles)], the other wall being a cylinder; the

integer superscript characterises the ¯ow regime with respect

to the number of convective cells [2 = two-cellular ¯ow (open

symbols), 4 = four-cellular ¯ow (solid symbols)].
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then the total heat ¯ow decreases. Further stretching
of the outer ellipse horizontally leads to a steep

increase of the total heat transfer, the cause is
explained below. This behaviour is not observed when
the same rate of deformation is applied to the inner

wall; in this case, the total heat ¯ow maintains a
decreasing trend until ln O210:6, where the minimum
heat ¯ow is obtained, and then increases with further

stretching of the wall.
Fig. 4 depicts streamlines and isotherms in the two-

cellular ¯ow regime for geometries illustrating the var-

ious annuli addressed in Figs. 2 and 3. Isotherms and
streamlines under four-cellular ¯ow conditions for
annuli with similar shapes as those of Fig. 4 are
plotted in Fig. 5. An unexpected ¯ow regime obtained

numerically is that of Fig. 4(d), it di�ers from the
usual four-cellular ¯ow pattern depicted in Fig. 5(d).
This unusual ¯ow regime appears for ln O2 > 0:3
(outer wall horizontally ¯attened) and is characterised
by the fact that the secondary cell in each half-annulus
is enfolded by the main cell and is co-rotating, whereas

the secondary cell in Fig. 5(d) is segregated from the
main cell and is counter-rotating. The numerical results
show that this ¯ow regime is stable and that it prevails

over the two-cellular ¯ow, however only experimental
evidence can ascertain if it is physically possible. The
appearance of the co-rotating cell and the reduction of
local gap width in the top part of the porous layer

explain the detachment of the heat transfer curve from
that of Fig. 4(b), causing a steep increase in Q (open

circles in Fig. 2).
The numerical results show that the judicious

stretching of one of the cylinders in the horizontal

direction reduces the heat ¯ow with respect to a con-
centric cylindrical annulus �ln Oi � 0� with the same
radius ratio. Bau [1,2] and Mota and Saatdjian [7]

showed that eccentric cylinders may be more e�ective
insulation under certain conditions than concentric
ones. The results presented here provide an alternative

approach to optimising the heat transfer rate by a
proper choice of the annular shape.
From the various options presented in Fig. 2, the

lowest heat transfer rate in two-cellular ¯ow con-

ditions is obtained by ¯attening the inner wall hori-
zontally (Fig. 4(b)). There are several factors that
contribute to reducing the heat transfer in this case,

which for moderate values of ln O prevail over the
opposing e�ect of decreasing the gap width between
walls laterally. The ®rst is that, although the center

of the ¯ow cell (the location of jcmaxj� is shifted
upwards and positioned above the inner ellipse
where the convective e�ects are more important, the

re-circulation ¯ow rate is not increased in that
zone. In fact, cmax is smaller for ln O1 � 0:6 �cmax �
8:44� than for the case of two concentric cylinders
�O1 � O2 � 1, cmax � 9:97). This means that the con-

vective heat transfer is not enhanced. Since the hori-

Fig. 5. Streamlines and isotherms in the four-cellular ¯ow

regime for Ra � 100, R = 2, and di�erent concentric geome-

tries �E � 0). (a) ln O1 � ÿ0:25, O2 � 1; (b) ln O1 � 0:4,
O2 � 1; (c) O1 � 1, ln O2 � ÿ0:25; (d) O1 � 1, ln O2 � 0:4:
The streamlines and the isotherms occupy the right- and left-

hand sides of each annulus, respectively.

Fig. 4. Streamlines and isotherms in the two-cellular ¯ow

regime for Ra � 100, R = 2, and di�erent concentric geome-

tries �E � 0). (a) ln O1 � ÿ0:5, O2 � 1; (b) ln O1 � 0:6, O2 � 1;

(c) O1 � 1, ln O2 � ÿ0:5; (d) O1 � 1: ln O2 � 0:6: The stream-

lines and the isotherms occupy the right- and left-hand sides

of each annulus, respectively.
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zontal stretching of the inner wall increases consider-

ably the local thickness of the top part of the layer
(Fig. 4(b)) the conductive heat losses are reduced.
Similarly, in the stagnant region located below the

inner wall, the local thickness of the layer is also
increased with horizontal wall stretching, and reduces
the conductive heat transfer prevailing in that zone. In

the lateral zones, where the porous layer is thinner, the
¯uid moves parallel to the walls due to the core region

between the two hydrodynamic boundary layers being
very thin. This gives rise to locally concentric iso-
therms, which are nearly uniformly spaced, resulting in

a low temperature gradient in that part of the layer,
and moving to stronger deformations the prevailing
e�ect of local thickness straightening.

As expected, when the ¯ow changes to a four-cel-
lular regime the heat transfer is enhanced. The

increase in total heat ¯ow is of about 10%. Stretch-
ing the inner wall makes the total heat ¯ow curve
behave as if the two-cellular heat transfer curve had

been shifted upwards on the vertical axis of Fig. 2.
If the outer cylinder is stretched, the shape of the

resulting heat transfer curve is inverted with respect
to the other heat transfer curves. It is also observed
that stretching the outer cylinder signi®cantly, either

horizontally or vertically, hinders the appearance of
the four-cellular ¯ow regime. With vertical stretching
of the outer wall, the local thickness of the top

part of the layer increases and the secondary coun-
ter-rotating cell is squeezed horizontally against the

vertical symmetry axis by the main cell (Fig. 5(c))
and eventually disappears. The resulting e�ect is a
decrease in heat transfer. If, on the other hand, an

initially cylindrical outer wall is slightly stretched
horizontally, the heat ¯ow increases due to the
decrease of gap width in the top part of the layer.

Further stretching shrinks the counter-rotating cell
due to the conical shape of the top part of the

layer (Fig. 5(d)) and reduces the heat transfer.
If the four-cellular ¯ow pattern prevails in the layer,

the minimum of the heat ¯ow curve is located at

ln O2 � ÿ0:3, which means that the best way to mini-
mise the heat losses in this ¯ow regime is to vertically
stretch the outer wall until the two counter-rotating

cells disappear. The improvement obtained over ¯at-
tening the outer wall horizontally in order to achieve

the same e�ect is, nevertheless, small. For Ra � 100
and R = 2, when the outer wall is horizontally
stretched by just the amount required to eliminate the

counter-rotating cells, the resulting geometry also
gives, curiously, the minimum heat transfer in the two-
cellular ¯ow regime. Thus, from the geometries cov-

ered in Fig. 2 the choice ln O1 � ÿ0:6 and O2 � 1 is
clearly the best option to minimise the heat losses in

both ¯ow regimes.
The heat transfer rate can be optimised further if the

concentric geometry that gives the minimum heat ¯ow
is made eccentric. The results are depicted in Fig. 6,

which shows the variation of both total heat ¯ow and
global Nusselt number as a function of the relative
eccentricity, E: As depicted in Fig. 6, the heat transfer

in both two- and four-cellular ¯ow conditions shows a
steep increase for large negative values of E, which is
coincident with the enlargement of gap width in the

top part of the layer. For positive values of E, the heat
¯ow curve in four-cellular ¯ow is insensitive to the
eccentricity until E10:8, where the top layer becomes

so thin that the counter-rotating cells disappear. The
minimum heat transfer in two-cellular ¯ow conditions
is obtained for E � 0:4: Streamlines and isotherms for
this geometry in both ¯ow regimes are plotted in

Fig. 7. Since for this geometry, the heat transfer in
four-cellular ¯ow does not increase compared to the
same ¯ow conditions in the concentric case, this

eccentric geometry is a good choice if one wishes to
minimise the heat transfer in both ¯ow regimes. The
savings in heat loss is of about 10%.

We also plot in Fig. 8 the e�ect of eccentricity on
the total heat ¯ow and global Nusselt number for the
geometry that gives the maximum heat transfer rate in

four-cellular ¯ow conditions, i.e., O1 � 1 and
ln O211=3 (maximum of the curve represented by
solid circles in Fig. 2). The results show that the
savings in two-cellular ¯ow conditions for this geome-

try can not be improved by varying the eccentricity,
and are only marginally decreased �12%� with respect
to two concentric cylinders. However, in four-cellular

¯ow conditions the heat transfer can be reduced by

Fig. 6. Dimensionless total heat ¯ow (Q ) and global Nusselt

number (Nu ) as a function of eccentricity �E� for Ra � 100, R

= 2, ln O1 � 0:6 and O2 � 1: The heat transfer data (symbols)

have been line-®tted in order to provide a better visualization

of the trends. The open symbols represent the heat ¯ow data,

while the solid ones denote the Nusselt numbers. Circles: two-

cellular ¯ow; squares: four-cellular ¯ow.
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about 10% compared to the concentric cylindrical ge-
ometry by a proper choice of the eccentricity. The gain

can be considered even greater if the base of compari-
son is taken as the same elliptic geometry with E � 0:
Once again, the optimum value of E is the lowest value

of E for which the shape of the annulus eliminates the
counter-rotating cells.

6. Conclusions

A very accurate and e�cient code has been devel-
oped to solve the two-dimensional Darcy±Boussinesq
equations, governing natural convection heat transfer

in horizontal porous annuli. The equations are solved
in generalised orthogonal coordinates using high-order
compact ®nite di�erences and an ADI time-marching

scheme. The mesh is generated numerically using the
orthogonal trajectory method, thus the code can be
easily used to investigate any annular geometry as long
as the 2D assumptions hold. The code has been

thoroughly validated against numerical results reported
by other authors for concentric and eccentric cylindri-
cal annuli.

In order to illustrate the potential of the code, it has
been used to study natural convection heat transfer in
eccentric elliptic porous insulation. The results clearly

demonstrate that the heat losses can be minimised by a
proper choice of the elliptic shape of a concentric
annulus, which can be further enhanced if the geome-
try is made eccentric. Previous studies have shown that

eccentric cylinders may be more e�ective insulation
under certain conditions than concentric ones. Our
®ndings provide an alternative approach of optimising

the heat transfer rate by a proper choice of both the
elliptic character and eccentricity of the annulus.
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